
Calculus II - Day 8

Prof. Chris Coscia, Fall 2024
Notes by Daniel Siegel

30 September 2024

Taylor Polynomials and Approximation

Goals for today:

• Define the degree n Taylor polynomial pn(x) for a function f(x).

• Use polynomials to estimate function values.

• Bound the error in the estimation using Taylor’s Remainder Theorem.

Recall: Linear approximation

Let f(x) be differentiable. We can estimate the value of f(x) near the point x = a using the tangent
line:

f(x)

L(x)

x = a

y = f(a)

x

y

In this case, for any differentiable function f(x), the linear approximation near x = a is based
on the value of the function f(a) and the value of the derivative f ′(a) at that point. The equation
of the tangent line at x = a is given by:

L(x) = f(a) + f ′(a)(x− a)

Ex. Estimate the value of
√
4.1 using linear approximation.

We are trying to estimate f(x) =
√
x at x = 4.1.
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Choose the base point a = 4:
f(4) =

√
4 = 2

f ′(x) =
1

2
√
x
, f ′(4) =

1

2
√
4
=

1

4

The linear approximation is:

L(x) = f(4) + f ′(4)(x− 4) =

(
2 +

1

4

)
(x− 4)

Therefore,
√
4.1 = f(4.1) ≈ L(4.1) = 2 +

1

4
· (4.1− 4) = 2 +

1

40
= 2.025

Check:
(2.025)2 = 4.100625 (very close!)

This works very well if f ′(x) is not changing very quickly near x = a.
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To do better: use a higher degree polynomial (quadratic).
Let’s approximate f(x) by a quadratic:

p2(x) = c0 + c1(x− a) + c2(x− a)2

How do we choose the constants c0, c1, and c2?

f(a) = p2(a) : c0 = f(a)

f ′(a) = p′2(a) : p′2(x) = c1 + 2c2(x− a)

At x = a:

p′2(a) = c1 + 2c2(a− a) = c1

⇒ c1 = f ′(a)

p′′(a) = p′′2(a) : p′′2(a) = 2c2

f ′′(a) = p′′2(a) = 2c2 (so) c2 =
f ′′(a)

2

”Quadratic approximation”:

p2(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2

Ex. For f(x) =
√
x at a = 4:

f(a) =
√
4 = 2

f ′(a) =
1

2
√
4
=

1

4

f ′′(x) =
d

dx

(
1

2
√
x

)
=

d

dx

(
1

2
x−1/2

)
= −1

4
x−3/2

f ′′(a) = −1

4
· (4)−3/2 = −1

4
· 1
8
= − 1

32

The quadratic approximation is:

√
x ≈ p2(x) = 2 +

1

4
(x− 4)− 1

64
(x− 4)2

Now, estimate
√
4.1:

√
4.1 ≈ p2(4.1) = 2 +

1

4
(4.1− 4)− 1

64
(4.1− 4)2

= 2 +
1

40
− 1

6400
= 2 + 0.025− 0.00015625 = 2.0248375
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(2.0248375)2 = 4.09999221 . . . (better than the linear approximation!)

Definition: Let f(x) be a function that is n times differentiable at x = a.
The n-th order Taylor polynomial of f centered at x = a is:

pn(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 +

f (3)(a)

3!
(x− a)3 + · · ·+ f (n)(a)

n!
(x− a)n

Alternatively, using summation notation:

pn(x) =

n∑
k=0

f (k)(a)

k!
(x− a)k

where 0! = 1 and f (0)(x) = f(x).

Finding a Taylor polynomial requires us to compute derivatives quickly.
Ex. Find the degree 3 Taylor polynomial of f(x) = ex centered at x = 0.
(This is a Maclaurin polynomial: a = 0)
Need f (k)(0) for k = 0, 1, 2, 3.

k f (k)(x) f (k)(0) ck = f(k)(0)
k!

0 ex 1 1
0! =

1
1 = 1

1 ex 1 1
1! = 1

2 ex 1 1
2! =

1
2

3 ex 1 1
3! =

1
6

f3(x) = 1 + x+ 1
2x

2 + 1
6x

3

When x is near 0, p3(x) ≈ ex: use this to estimate
√
e.

e1/2 ≈ p3(1/2) = 1 +
1

2
+

1

2

(
1

2

)2

+
1

6

(
1

2

)3

= 1 +
1

2
+

1

8
+

1

48

=
48 + 24 + 6 + 1

48
=

79

48

Ex. f(x) = cos(x). Find the degree 5 Taylor polynomial at x = 0.
Need f (k)(0) for k = 0, 1, 2, 3, 4, 5.

k f (k)(x) f (k)(0) ck = f(k)(0)
k!

0 cos(x) 1 1
1 − sin(x) 0 0
2 − cos(x) −1 −1

2! = −1
2

3 sin(x) 0 0
4 cos(x) 1 1

4! =
1
24

5 − sin(x) 0 0

p5(x) = 1− 1
2x

2 + 1
24x

4
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Ex. Find the degree 4 Taylor polynomial of ln(x) centered at x = 1.
Need f (k)(1) for k = 0, 1, 2, 3, 4.

k f (k)(x) f (k)(1) f(k)(1)
k!

0 ln(x) ln(1) = 0 0
1 1

x = x−1 1 1
2 −x−2 −1 −1

2! = −1
2

3 2x−3 2 2
3! =

1
3

4 −6x−4 −6 −6
4! = −1

4

The degree 4 Taylor polynomial for ln(x) centered at x = 1 is:

p4(x) = (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3 − 1

4
(x− 1)4

Q: How good an approximation is pn(x) to f(x)?
Definition: Let pn(x) be the degree n Taylor polynomial of f(x) centered at x = a. When we use
pn(x) to estimate f(x), the remainder is:

Rn(x) = f(x)− pn(x)

Taylor’s Remainder Theorem

Suppose the first n+ 1 derivatives of f(x) are continuous on the interval from x to a (either [x, a]
or [a, x]). For all x in this interval, if

f(x) = pn(x) +Rn(x),

then

Rn(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1

for some c between x and a.
How do we use this?

Find the maximum value M of |f (n+1)(c)| for c between x and a. Then:

|Rn(x)| ≤ M · |x− a|n+1

(n+ 1)!

Ex. The degree 5 Taylor polynomial for cos(x) at a = 0 is:

p5(x) = 1− 1

2
x2 +

1

24
x4

How far is p5(−0.1) from the actual value of cos(−0.1)?
We need to find an upper bound on the 6th derivative of cos(x) between [−0.1, 0].

d6

dx6
cos(x) = − cos(x)
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Since | cos(x)| is always between 0 and 1, take M = 1.

|R5(−0.1)| ≤ M · |x− a|n+1

(n+ 1)!
, n = 5, M = 1, a = 0, x = −0.1

= 1 · |0.1|
6

6!
=

0.16

720
=

1

720000000

Ex. The degree 3 Taylor polynomial of ex is:

p3(x) = 1 + x+
x2

2
+

x3

6

How far is p3
(
1
2

)
from

√
e?

We need an upper bound on the 4th derivative of ex between 0 and 1
2 .

d4

dx4
ex = ex

Take M =
√
e.

Why? ex is increasing, so its maximum is attained at the right endpoint x = 1
2 .

|R3

(
1

2

)
| ≤

√
e · |0.5|

4

4!
=

√
e

384
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